

case passive • sostenibili • in classe A

Ancona, 18 Aprile 2012

Auditorium G. Mantovani

INTERVENTO DI Arch. S. PATERNO - TBZ

LA CASA PASSIVA IL MODELLO VINCENTE

Technisches Bauphysik Zentrum Centro di Fisica Edile Arch. Salvatore Paterno

TBZ International

TBZ Centro Fisica Edile

Via Maso della Pieve 60a, I-39100 Bolzano (BZ) Tel: +39 0471 251701 Fax: +39 0471 252621

Via Stafette Partigiane 16/B, I-41100 Modena (MO) Tel: +39 0599 780985 Fax: +39 0599 780985

Via Ragni 1, I-70024 Gravina in Puglia (BA) Tel: +39 080 9671606 Fax: +39 080 9671606

Avenida Bogatell 21,1-1 E-08005 Barcelona Tel: +34 932215223 Fax: +34 932215223

Web: www.tbz.bz Email: info@tbz.bz

CONSULENZA CERTIFICAZIONI CORSI

Paterno Salvatore

Fisica Edile Energy Consulting Esperto gPHi

Via Ragni, 5 - 70024 Gravina in P. (Ba)

Tel. 080/9671606 - Cell. 333/8483106

E-mail: rino.paterno@tbz.bz

web: www.tbz.bz

CASA PASSIVA e CLASSE A

CONSULENZA a TECNICI, IMPRESE-P.A.- AZIENDE

> DIAGNOSI ENERGETICA TERMOGRAFIE E MISURE

CERTIFICAZIONI

FISICA EDILE SVILUPPO PRODOTTI

FORMAZIONE

EUROPA QUO VADIS?

DIRETTIVA 2010/31/UE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 19 maggio 2010

sulla prestazione energetica nell'edilizia

- Entro il 31 dicembre 2020 tutti gli edifici di nuova costruzione dovranno essere near zero energy "Edifici a Energia Quasi Zero".
- Per gli edifici pubblici questa scadenza è anticipata al 31 dicembre 2018.
- Il fabbisogno energetico restante deve essere coperto con energie rinnovabili.
- Nelle ristrutturazioni deve essere usato un calcolo payback a medio termine (15-20 anni) dell'investimento per il miglioramento energetico e usata la strategia più conveniente.

EUROPA QUO VADIS?

http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P6-TA-2008-0033+0+DOC+XML+V0//IT

"Risoluzione del Parlamento europeo del 31 gennaio 2008 su un Piano d'azione per l'efficienza energetica: concretizzare le potenzialità"

Articolo 29:

chiede alla Commissione di proporre, a partire dal 2011, un requisito vincolante in base al quale tutti gli edifici nuovi che necessitano di un sistema di riscaldamento e/o raffreddamento dovrebbero rispettare le norme relative alle abitazioni passive o norme equivalenti per gli edifici non residenziali nonché, a partire dal 2008, l'obbligo di utilizzare soluzioni passive di riscaldamento e raffreddamento;

ITALIA QUO VADIS?

Con quali mezzi iniziare il nuovo percorso verso la VIANOVA?

International Energy Agency (OCSE) dice che la maggiore riduzione di CO₂ si raggiunge attraverso l'efficienza energetica:

Primo posto: efficienza energetica oltre 50% dal settore edilizio;

Secondo posto: efficienza elettrica;

Terzo posto: energie rinnovabili;

Ultimo posto: nucleare (6% nel mondo)

Fonte ilretegiornale .it

Casa Passiva

Tutti ormai costruiscono in classe A, la legge lo consente, tanti i sistemi di sostenibilità, (a punti, ad occhio, ..).

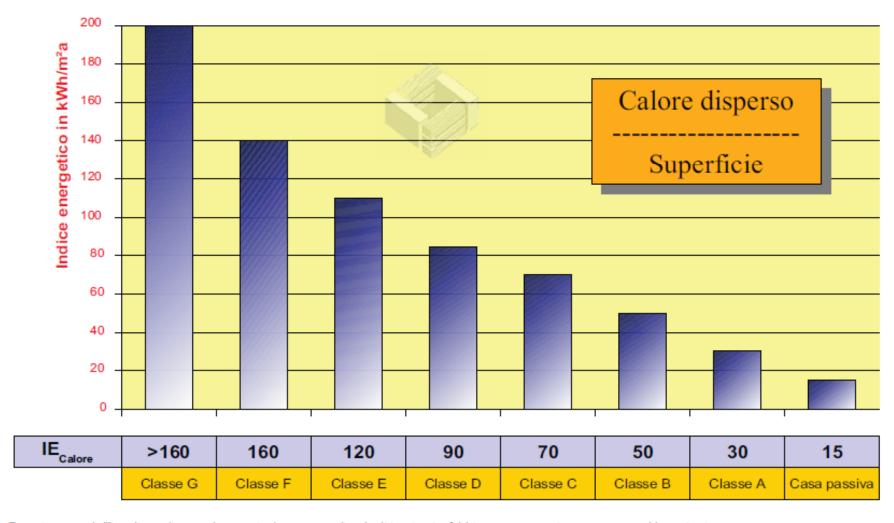
Ma la scienza cosa dice?

FISICA DELLE COSTRUZIONI + ARCHITETTURA

La Casa Passiva

Il concetto di Casa Passiva si basa sui principi della fisica delle costruzioni e della progettazione passiva.

La Progettazione Passiva di per sé non definisce una Casa Passiva.


Nel 1991 il fisico W. Faist e l'arch. Bo Adamson codificano i principi della Casa Passiva di Darmstadt con lo standard Passivhaus.

Elementi fondamentali sono:

- Limite del consumo energetico predefinito;
- Requisiti di qualità termica;
- L'uso strategico di sistemi passivi che rispettano limiti di consumo e comfort.

Casa Passiva: limite di consumo definito

Energia persa dell'involucro (invernale + estivo) senza perdita degli impianti e fabbisogno energetico per acqua calda sanitaria

Casa Passiva: requisiti di qualità

Comfort	Ricambio d'aria igienico	$n_{res} \ge 0.3 h^{-1}$
	Temperatura superficiale interna minima da comfort	T _{simin} ≥ 17°C
	Surriscaldamento estivo	h ₂₆ ≤ 10%
Energia	Fabbisogno energetico specifico utile per riscaldamento e raffrescamento	IE _{inv} ≤ 15 kWh/m²a
	Fabbisogno energetico specifico primario totale	IE _{prim} ≤ 120 kWh/m²a
Potenza	Potenza specifica trasportabile con portata d'aria igienica	P _{risc} ≤ 10 W/m² P _{raff} ≤ 4 W/m²
Secondari	Tenuta all'aria minima	n ₅₀ ≤ 0,6 h ⁻¹
	Rendimento di recupero minimo degli impianti di ventilazione	η _{rec} ≥ 75%
	Consumo elettrico massimo dell'impianto di ventilazione	η _{VMCel} ≤ 0,45 Wh/m³

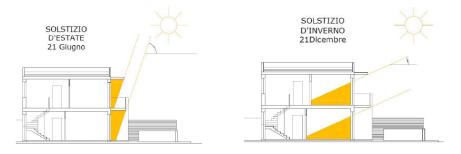
Casa Passiva: aspetti climatici

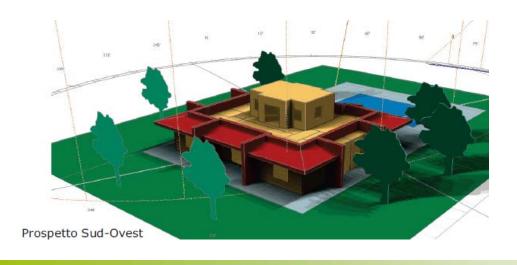
Funziona nel clima mediterraneo?

Presenza di variabilità climatica

Nelle nostre regioni mediterranee non si può prescindere dalla variabilità del clima e dalle oscillazioni stagionali

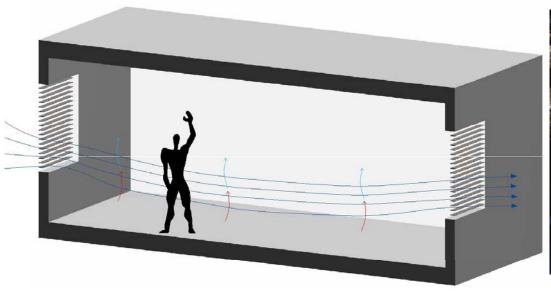
In PRIMAVERA / In INVERNO: In ESTATE: **AUTUNNO**: sfruttare proteggere dalla conservare le condizioni l'energia e radiazione solare climatiche esterne captare la e dal ottimizzandole per radiazione solare. surriscaldamento ottenere il comfort


L'area climatica mediterranea presenta la duplice esigenza di schermarsi dalla radiazione solare estiva e di favorire il guadagno di calore in inverno, proprio ottimizzando la progettazione di sistemi schermanti ed ombreggianti integrati all'architettura.


Casa Passiva: aspetti progettuali

Strategie estive:

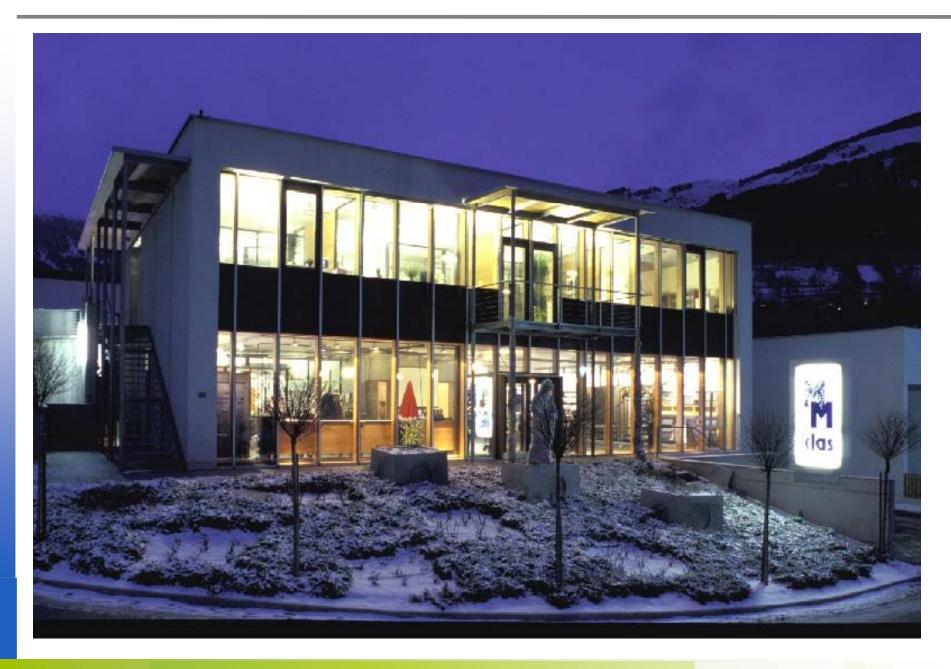
Indice di raffrescamento (Definito) Orientamento ottimale; Ombreggiamenti attivi e passivi; Controllo della radiazione solare;



Casa Passiva: aspetti progettuali

Strategie estive:

Preraffrescamento col terreno e recupero freschezza; Ventilazione Naturale Controllata; Masse termiche dinamiche interne;

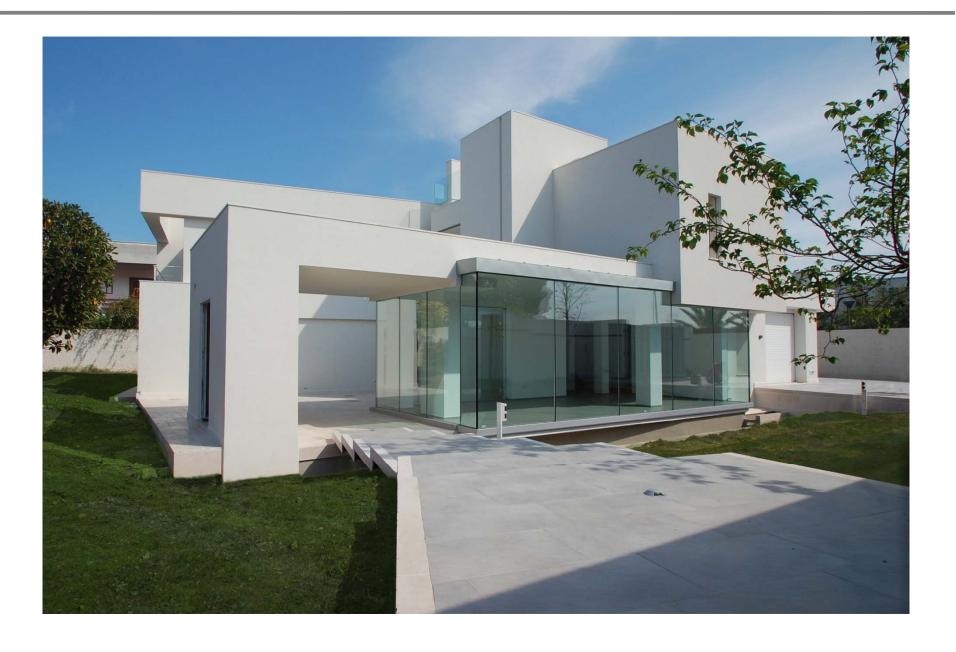


CASA PASSIVA ESEMPI IN ITALIA

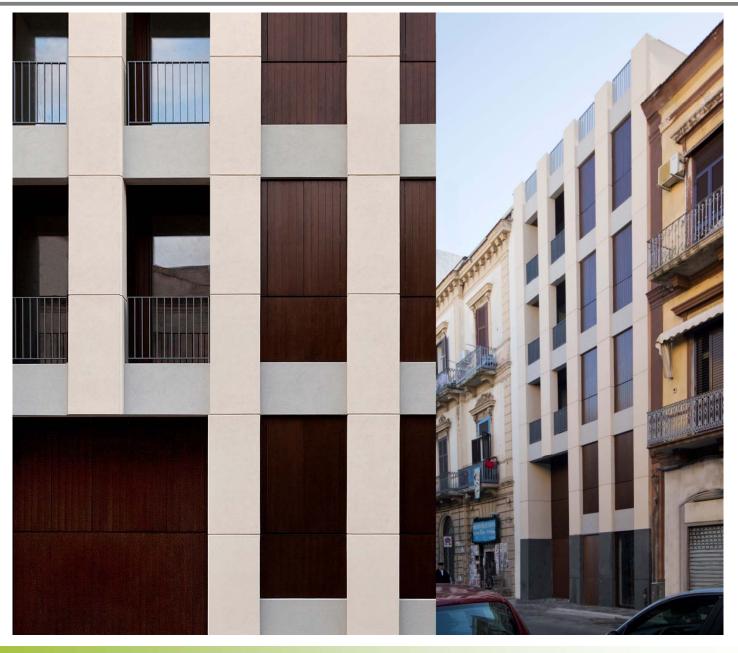
Passiv House in Italia – Alto Adige 1999

Passiv House in Italia – Trentino 2011

Passiv House in Italia – Toscana 2009


Passiv House in Italia – Abruzzo 2012

IN COSTRUZIONE



Passiv House in Italia – Puglia 2008

Passiv House in Italia – Puglia 2011

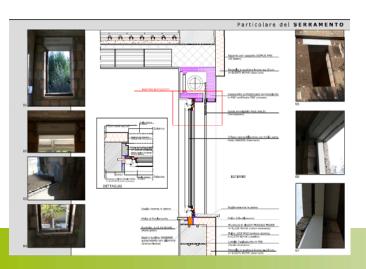
Passiv House in Italia – Puglia 2012

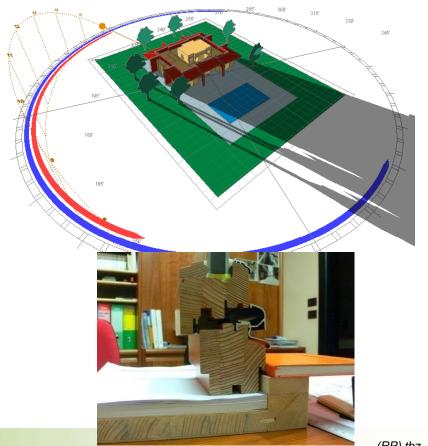
CONCETTO
ENERGETICO C.P.
PERCHE'
IL MODELLO VINCENTE

Non impone uno stile o un sistema costruttivo o Marchi

E' un concetto definito e comprensibile

ENERGIA: CONCETTO ATTIVO

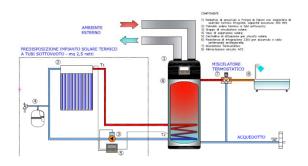



Concetto Energetico

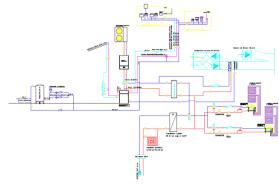
Obiettivi energetici e di qualità costruttiva; Tecnologicamente matura;

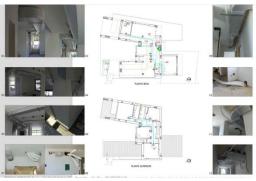
Si relaziona con il clima locale:

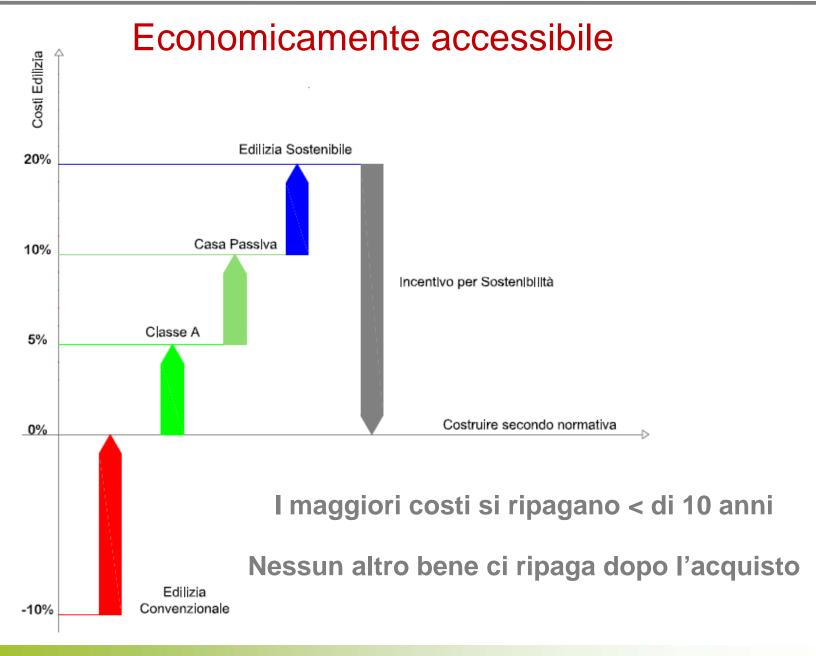
Classificazione energetica indice energetico involucro IE						
Indice energetico involucro			Classe			
P	< 15 <u>kWh</u> /m²a	11 kWh/m²a	IE P			
A	< 30 <u>kWh</u> /m²a					
В	< 50 <u>kWh</u> /m²a					
С	< 70 <u>kWh</u> /m²a					
D	< 90 <u>kWh</u> /m²a					
E	~ 120 <u>k₩l</u> /m²a					
F	< 160 <u>kWh</u> /m²a					
G	> 160 <u>kWh</u> /m²a					

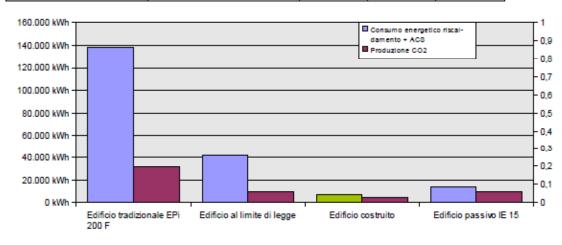


Impianti ad alta efficienza energetica:


Impianto Ventilazione Meccanica Controllata; Pompe di calore, imp. geotermici; Sistemi radianti a bassa temperatura, imp.ad aria;


Impianti solari termici e FV integrati;




Ecologicamente efficace

La Casa Passiva consuma in media 80% in meno rispetto ad un edificio secondo Dlgs 311/06;

Emette meno del 90% di CO2 in atmosfera.

RISPARMIO ENERGETICO Risc & ACS

	Consumo energetico riscaldamento + ACS	Risparmio % energia	Produzione CO2	Risparmio % CO2
Edificio tradizionale EPi 200 F	138.300 kWh	333%	31.671 kg/a	333%
Edificio al limite di legge	41.479 kWh	100%	9.499 kg/a	100%
Edificio costruito	6.761 kWh	84%	4.658 kg/a	51%
Edificio passivo IE 15	13.449 kWh	68%	9.266 kg/a	2%

Strategicamente percorribile

Obiettivo nazionale riduzione sensibile dei livelli di immissioni di CO2 entro il 2020 = limiti del 2005 per il settore residenziale

Possibile se:

- 1- adeguare il nuovo costruttivo secondo P.H.;
- 2- ristrutturare 2% del parco edilizio esistente ogni anno in P.H.;

Il problema dov'é

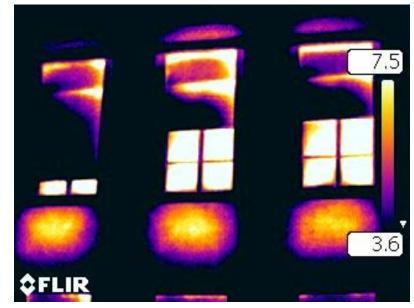
In Italia:

Nuove costruzioni	2-3% anno	00-
Demolizioni esistente	0,1-0,5% anno	=> + CO ₂ comunque

Nuovi scenari possibili

Il modo più immediato per fermare gran parte di CO₂ nel settore edilizio è puntare sulle demolizioni e ristrutturazioni.

Rivedere il sistema legislativo troppo relativistico e non prestazionale perché l'efficienza energetica nelle abitazioni possa diventare un bene per tutti;



Nuovi scenari possibili

Formazione e informazione per imprese costruttrici e utenti;

Azione del settore pubblico: sugli edifici pubblici come scuole ecc. "l'efficienza energetica non consiste nella posa di qualche pannello solare su un involucro colabrodo di energia";

Nuovi scenari possibili

Nuovo sviluppo economico e sociale; La sostenibilità è incompatibile con il degrado del patrimonio edilizio esistente

Real Estate e Finanza Immobiliare;

Nuovo Marketing Immobiliare (- push, + pull)

Sviluppo Nuovi Asset Immobiliari

Investment Management

Il Concetto Eenrgetico di **Casa Passiva** è il principio attivo dell'efficienza energetica: scientifico, fattibile, vincente. Una realizzazione inadeguata potrebbe danneggiare il nuovo mercato e una concreta speranza di sviluppo sostenibile, perché se oggi

TUTTO è in CLASSE A (sulla carta), domani TUTTO potrebbe essere PASSIVHOUSE

GRAZIE

Technisches Bauphysik Zentrum Centro di Fisica Edile Arch. Salvatore Paterno